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Abstract -For simulation-based acquisition t o
effectively lower life-cycle cost and cycle t i m e ,
the ability to make good design decisions early i s
a significant driver. Building virtual p r o t o t y p e s ,
enabling one to analyze the impact of d e c i s i o n s ,
achieves effective simulation-based acqu is i t ion
processes. Virtual prototypes need to support a
comprehensive set of analyses that will b e
performed on the product; hence, all aspects o f
product data and behavior need to be represented.
Building virtual prototypes of complex s y s t e m s
being designed by a multi-organizational team
requires new architectural concepts and redesigned
processes. Implementation of these new arch i -
tectures is complex and needs to leverage c o m -
mercial technologies to achieve feasible s o l u -
tions. One must also carefully consider the s t a t e
of the current commercial technologies and frame-
works as well as the organizational and cultural
aspects of organizations that use these s y s t e m s .
This paper describes key architectural p r i nc i p l es
that one must address for a cost-effective i m p l e -
mentation. The paper then discusses key arch i -
tectural concepts and trade-offs that are necessary
to support virtual prototypes of complex systems.

I.  INTRODUCTION

Lockheed Martin, government and industry partners, and
supply chain members are developing and manufacturing
large, complex systems. Using simulation-based acquisition
and design strategies to develop cost-effective virtual
prototypes of these systems present enormous challenges.
One will use virtual prototypes, intended to support a
product’s entire life-cycle, for multiple purposes, including
system engineering during conceptual design and for
warfighters during training. Therefore, virtual prototypes
must capture all of the information related to a product’s
definition and it must provide mechanisms to incorporate all
aspects of a product’s behavior. Product complexity forces
organizations to share the design and manufacture of these
products; therefore, the virtual prototype must be shared.
Detailed knowledge of a subsystem typically resides with
the supplying organization, so it is critical that the
organization create and manage the virtual prototype of that
subsystem. Management of the virtual prototype’s com-
plexity is important to ensure that developments focus on

areas of sufficient benefit; otherwise, the implementation
cost of the virtual prototype could be unbounded. Well-
designed architectures are key to managing complexity. The
following key goals will ensure a cost-effective virtual
prototype:
• Create a multi-domain product model that is open,

extensible, integrated, and synchronized.
• Integrate equations and/or behaviors with the relevant

product data, thereby enabling evaluating functional
performance and optimizing life-cycle costs.

• Create executable representations of the system with
multi-level fidelity to support multi-level analysis.

• Execute simulation for analysis and demonstration.

II.  MYTH OF COMMONALITY IN ARCHITECTURE

Information Technologies are trending toward common
systems, tools, and processes. While that is a trend away
from disjointed systems, it is unrealistic to assume that
there will ever be a single process or system that satisfies
every need in an organization with multiple businesses.
Figure 1 shows diminishing returns as the degree of
commonality increases beyond a limit. Figure 2 shows that
hidden or ignored qualitative factors increase costs while
easily quantifiable and visible metrics decrease costs. In this
example, maintenance, deployment, and integration repre-
sent quantifiable costs, while coordination and changes and
implementation delays represent qualitative factors that
cause significant cost penalties in overall solutions. Most
approaches ignore qualitative factors that become important
as commonality approaches 100 percent. Existing architec-
tures only account for technical aspects and ignore cultural
and organizational aspects.

We need better virtual prototyping architectures to address
this dichotomy among business needs and capabilities
available with commercial off-the-shelf (COTS) solutions.
A federated approach [1] provides the flexibility to deal with
these current trend factors. Federation implies that one has
established a degree of interoperability among business
systems. Interoperability enables a shared information area
and it provides a set of operations that can be initiated in a
controlled fashion by one system operating on information
in the shared/private area of another system. Members can
join a federation to share information and functionality on a
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Fig. 1.  Federated architecture provides an optimal solution.

Fig.  2.  Architecture trade-off model.

program and they can leave when the effort is finished.
Federation provides a low-risk alternative to existing tech-
nology-investment strategies, and it enables organizations
to bring new technologies in a modular fashion instead of
requiring a total upgrade of the internal business system
architecture (the big bang approach). A federated architecture
enables programs to implement a total-systems view and it
also provides the ability to optimize supply chains at a
global level.

III.  GUIDING PRINCIPLES

Several principles guide the development of the architec-
ture. These principles are useful in information technology
and other domains, such as lean manufacturing [4] and
systems thinking [5]:
• Leverage COTS tools and technologies to the maximum

extent possible.
• Focus on federated approaches instead of homogeneous

information-system approaches.
• Provide information (and resources) only when needed.
• Provide only needed information (no more, no less).
• Do not carry Information defects to the next step.

• Put in place a process that discourages the generation of
defects.

• Information should be owned by the entity that is most
suited to keep it current/accurate.

• Information must be accessible by those who have or
may have a need.

• Account for soft/qualitative factors.

The focus is on guiding principle as opposed to hard-
design constraints. This allows one to realize benefits in
most cases and to avoid penalties associated with excep-
tional cases.

IV.  ARCHITECTURE FOR SIMULATION-BASED ACQUISITION

The principle objective of the virtual prototyping
architecture is to reduce the complexity of the system being
designed to implement the virtual prototype. The architec-
ture must also help achieve modularity and reuse of
components that make up that architecture. One must apply
the principles of Cost as an Independent Variable (CAIV)
analysis for systems design to the architecture for the virtual
prototype.



A.  Architecture Concepts

Rapidly evolving software, network, and associated
technologies require innovative concepts to leverage their
benefits in the architectural approach. This section provides
an overview of these concepts, which represent foundational
technologies for virtual prototyping architectures.

1.  Internet Architecture

The virtual prototype architecture will need to be highly
scalable and evolvable. The Internet provides an architecture
that is highly distributed and scalable. It derives these
properties via simple mechanisms, such as hyperlinking
information across web servers. Nodes on networks can be
clients and/or servers, and each can perform the role that is
necessary for operation. The ability of enterprise agents to
hyperlink to each other across the network and to travel
across clients and servers will provide essentially unlimited
scalability for the architecture.

2.  Common Object Request Broker Architecture

The Object Request Broker (ORB) is a basic architectural
construct sits between clients and makes requests. Figure 3
[2] shows the objects that will service those requests. The
ORB mechanisms can support all interactions among
various architectural components.
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Fig.  3. Object request broker concept.

One can define interfaces statically in an interface
definition language (object management group IDL), which
defines the types of objects according to operations that may
be performed on them and the parameters to those
operations. The IDL is language independent, and bindings
to several programming languages are available, such as
C++ and Java. Note that ORBs do not provide complete
data-management functions or object-domain functionality.
They facilitate the communication without necessarily
understanding what is being communicated. They also
interoperate via the Internet Inter-ORB Protocol (IIOP),
which specifies a standardized interoperability protocol for
the Internet.

3.  Federated Architecture

A federation implies a loosely coupled system distributed
across the Internet or an Intranet, where the participants join

or leave the federation without breaking it and where they
function on their own when not a part of the federation
(Figure 4).
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Fig.  4.  Federated architecture concept.

The federation provides a low-risk alternative to existing
technology investment strategies, and it enables organiza-
tions to bring new technologies in a modular fashion as
opposed to the big bang approach, which requires replace-
ment of most or all of the information systems for a
technology upgrade. Mechanisms, such as smart-proxy
objects, achieve federation.

4.  Smart Proxy Objects

An innovative concept is the “proxy” object, which
provides a surrogate or placeholder for another object to
control access to it (Figure 5) [3]. A proxy object resides in
the local environment and represents an object residing in a
remote environment. The proxy handles requests made to it
and forwards them to the real object for further processing,
which returns the results back to the proxy object. The
proxy then forwards the results to the requester. Therefore,
clients only work with the proxy object in the local
environment. They are insulated from the details and how-to
of dealing with objects in remote environments. These
proxies are not the same as those in the ORB; however,
they will use proxy objects and services provided by the
ORBs for their operation. Proxy objects provide tremendous
flexibility in implementation approaches, enabling variable
degrees of information replication and flexible behavior via
tailorable business rules. Proxies can be implemented to
various levels of complexity, starting from simple uniform
resource locators (URLs) to complex, tightly-coupled proxy
objects.

5.  Component-Based Architecture

A key concept that enables realistic and affordable
development of the architecture is the ability to build in
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modular, reusable components. A component is a reusable
software program that can be easily added to or combined
with other software programs, enabling construction of
sophisticated programs in a modular fashion. One can divide
the architecture into components via well-defined interfaces.
Interfaces allow small components to be grouped to create
complex systems that would otherwise be impractical to
build. Concepts of interfaces allow objects to be typed
across many dimensions. Objects can adhere to many differ-
ent interfaces without the burden of multiple inheritance.
This also allows one to build information models from the
bottoms-up and not use the monolithic, top-down informa-
tion model. The impact of component-based architectures is
a significant gain in productivity. The use of this design
strategy is rapidly gaining acceptance by the information-
technology community. Both COM+ and Java use
component-based architectures.

V.  IMPLEMENTATION ISSUES

In addition to typical cultural and organizational issues
that one must address in architecture strategies [1], a key
implementation issue is the use of a top-down versus a
bottom-up approach. We recommend a hybrid of the two
based on the following observations:
• Bottom up is relevant when there is little understanding

of the problem.
• Top down can completely address the problem (no items

are missed).
• Bottom up enables the problem to be addressed in small

chunks.
• Top down works in relatively stable environments;

bottom up is suitable for rapidly changing environments.
• Top down is more efficient when there is a low

probability of going astray.
• Bottom up is more forgiving.
• Top down is about “knowing it all” at the start; whereas,

bottom up is about “learning it” along the way.
• Top down has slower cycles; whereas, bottom up has

faster cycles.

• Apply top down at the conceptual level but apply bottom
up for details.

A hybrid of both approaches fits most real-world
situations. Most projects start top-down before shifting to
bottoms up at implementation, where the focus is on reuse
of available, existing, or previously developed components.
Strategies can also shift emphasis among top down and
bottoms up at multiple points in the development process.

VI.  SUMMARY

Virtual prototyping is a critical to the cost-effective
design of complex systems. New architectural concepts are
emerging to support virtual prototyping of complex
systems across company boundaries. When implementing
virtual prototyping architectures, realize there are limits to
benefits achieved through commonality across distributed
implementations and that soft/qualitative factors play an
important role in architectural trade-offs. This paper outlined
key architectural principles and concepts that improved the
practicality of large-scale virtual prototyping efforts. Many
COTS tools and technologies are emerging to support
implementation of these concepts. Effectively leveraging
these tools and technologies will manage the scope of the
effort while maintaining cost and schedule constraints.
Bottom-up and top down design approaches have
advantages, but a hybrid approach is best for most
implementations.  
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TECHNOLOGYTECHNOLOGY BUSINESSBUSINESS
Intelligent SystemsIntelligent Systems
•• Operator AssistantsOperator Assistants
•• C4I Software/C4I Software/ TestbedsTestbeds
•• Agent Information AccessAgent Information Access
•• Sensor Data FusionSensor Data Fusion

Information InfrastructureInformation Infrastructure
¥¥ RT/FTRT/FT QoS QoS Software Software
¥¥ Component ArchitecturesComponent Architectures
¥¥ Distributed FrameworksDistributed Frameworks

Embedded TrainingEmbedded Training
¥¥ Auto-Assessment/MeasurementAuto-Assessment/Measurement
¥¥ Team Performance EnhancementTeam Performance Enhancement
¥¥ Scenario-Based LearningScenario-Based Learning

Virtual PrototypingVirtual Prototyping
¥¥ Rapid Prototyping Tools/ServicesRapid Prototyping Tools/Services
¥¥ Advanced SimulationAdvanced Simulation Testbeds Testbeds
¥¥ Embedded MultiprocessorsEmbedded Multiprocessors
¥¥ Smart Product ModelsSmart Product Models

Artificial IntelligenceArtificial Intelligence
¥¥ Intelligent AgentsIntelligent Agents
¥¥ Situation AssessmentSituation Assessment
¥¥ Associate TechnologyAssociate Technology
¥¥ Data FusionData Fusion

Distributed ProcessingDistributed Processing
¥¥ Component SystemsComponent Systems
¥¥ Distributed ObjectsDistributed Objects
¥¥ IntegratedIntegrated QoS QoS
¥¥ Distributed Management/Distributed Management/

PlanningPlanning

Embedded ProcessingEmbedded Processing
¥¥ Advanced Simulation/Advanced Simulation/

AutocodeAutocode
¥¥ Digital Signal ProcessingDigital Signal Processing
¥¥ Multiprocessor ArchitecturesMultiprocessor Architectures
¥¥ Enterprise Process andEnterprise Process and

Information ManagementInformation Management

Advanced Computing Solutions É Advanced Computing Solutions É 
Leveraging technology into businessLeveraging technology into business
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builds on PDM, COTS product integration and CAIVbuilds on PDM, COTS product integration and CAIV
experience from RASSP and other programsexperience from RASSP and other programs

Enterprise Technology CapabilitiesEnterprise Technology Capabilities

¥¥ Key ATL capabilitiesKey ATL capabilities
ÑÑ Process reengineeringProcess reengineering
ÑÑ Product dataProduct data

managementmanagement
ÑÑ Reuse technology:Reuse technology:

classification hierarchyclassification hierarchy
models and domainmodels and domain
specific processesspecific processes

ÑÑ Manufacturing andManufacturing and
supply chainsupply chain
technologiestechnologies

¥¥ SBA/Smart Product Model -SBA/Smart Product Model -
ATL rolesATL roles
ÑÑ Core SPM architectureCore SPM architecture

developmentdevelopment

ÑÑ Systems engineeringSystems engineering
tradeoff and costtradeoff and cost
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RationaleRationale

¥¥ All businesses under pressure to cut cost and cycle timeAll businesses under pressure to cut cost and cycle time

¥¥ Programs run by teams of different organizations; each has itsPrograms run by teams of different organizations; each has its
own toolsown tools

¥¥ Each program may require a different mix of team members andEach program may require a different mix of team members and
systemssystems

¥¥ Heterogeneity of business systems cannot be avoidedHeterogeneity of business systems cannot be avoided

¥¥ Cannot (always) enforce use of one set of business systems forCannot (always) enforce use of one set of business systems for
each programeach program

¥¥ Cannot afford to procure/install/deploy/maintain/train on multipleCannot afford to procure/install/deploy/maintain/train on multiple
systemssystems

¥¥ Cannot afford to integrate design tools to multiple systemsCannot afford to integrate design tools to multiple systems
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ApproachApproach

¥¥ Accept diversity of business systemsAccept diversity of business systems

¥¥ Let each business maintain its business systems while strivingLet each business maintain its business systems while striving
for commonalityfor commonality

¥¥ Design for changeDesign for change

¥¥ Be open, flexible, and vendor co-dependentBe open, flexible, and vendor co-dependent

¥¥ Develop technologies to enable these business systems toDevelop technologies to enable these business systems to
interoperateinteroperate as dictated by business requirements as dictated by business requirements



JJW 10/31/99 - 10

É

Firewall  ¥  Culture  ¥
Practices  ¥  Data Structures

Program 1Õs
Systems

Business
Unit 1Õs
Systems

Business
Unit 2Õs
Systems

Business
Unit 3Õs
Systems

Program 2Õs
Systems

Program 3Õs
Systems

Business ArchitectureBusiness Architecture



JJW 10/31/99 - 11

Accommodating ChangeAccommodating Change

1999 2005 2010 2015 2020 2025 2030 2035 2040 2045

Life

Life

20

10-15

7-12

5-10

3-5

2-3

18m

Continuous

Continuous

DD 21

Hull/ Propulsor

Mission Support Systems

Sensors

Weapons

Apertures

Computers

Communications Equipment

Software and Operating Systems

InformationInformation

PeoplePeople

Y
ea

rs
Y

ea
rs

Everything will change. Things Change at Different Rates



JJW 10/31/99 - 12

Architecture StrategyArchitecture Strategy

¥¥ Guiding principlesGuiding principles

ÑÑ Leverage commercial, off-the-shelf (COTS) toolsLeverage commercial, off-the-shelf (COTS) tools

ÑÑ Provide information (and resources) only when neededProvide information (and resources) only when needed

ÑÑ Provide only the needed information (no more, no less)Provide only the needed information (no more, no less)

ÑÑ Do not carry information "defects" to the next stepDo not carry information "defects" to the next step

ÑÑ Put in place a process that discourages generation of defectsPut in place a process that discourages generation of defects

ÑÑ Information should be owned by the entity that is most suitedInformation should be owned by the entity that is most suited
to keep it current/accurateto keep it current/accurate

ÑÑ Information should be accessible by those who have or mayInformation should be accessible by those who have or may
have a needhave a need

ÑÑ Account for soft/qualitative factorsAccount for soft/qualitative factors
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Architecture ConceptsArchitecture Concepts

¥¥ Internet-based architectureInternet-based architecture

¥¥ Federated architectureFederated architecture

¥¥ Object-request-broker architectureObject-request-broker architecture

¥¥ Component-based architectureComponent-based architecture

¥¥ Smart proxy objectsSmart proxy objects
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Internet-Based ArchitectureInternet-Based Architecture

¥¥ Based on loose coupling of systems connected by ubiquitousBased on loose coupling of systems connected by ubiquitous
standardsstandards

¥¥ Highly scalable, distributed and open architectureHighly scalable, distributed and open architecture

¥¥ High local control; no central controlHigh local control; no central control

¥¥ Easy access to informationEasy access to information
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Federated ArchitectureFederated Architecture

¥¥ A federation is an arrangement where members join and leave asA federation is an arrangement where members join and leave as
necessary and can exist as autonomous entitiesnecessary and can exist as autonomous entities
ÑÑ This is the way corporations work when they team for programsThis is the way corporations work when they team for programs

ÑÑ Unfortunately, our business systems donÕt behave this wayUnfortunately, our business systems donÕt behave this way

ÑÑ Enterprise-wide implementations are not necessarily the best routeEnterprise-wide implementations are not necessarily the best route

ÑÑ Completely common systems/tools/processes are not necessarily goodCompletely common systems/tools/processes are not necessarily good
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Object-Request-Broker ArchitectureObject-Request-Broker Architecture

¥¥ Defined as the CORBA (Common-Object-Request BrokerDefined as the CORBA (Common-Object-Request Broker
Architecture) standard by Object Management Group (OMG)Architecture) standard by Object Management Group (OMG)

¥¥ Defines Internet Inter-ORBDefines Internet Inter-ORB
Protocol (IIOP) as theProtocol (IIOP) as the
underlying protocolunderlying protocol

¥¥ All requests/responsesAll requests/responses
routed through a requestrouted through a request
brokerbroker
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Component-Based ArchitectureComponent-Based Architecture

¥¥ System defined as a collection of componentsSystem defined as a collection of components

¥¥ Components have well defined interfacesComponents have well defined interfaces

¥¥ Ability to build object models in a bottom-up fashionAbility to build object models in a bottom-up fashion

¥¥ Allows bottom-up development of complex systemsAllows bottom-up development of complex systems

¥¥ Java/remote method invocation and COM+ support component-Java/remote method invocation and COM+ support component-
based architecturesbased architectures
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Smart Proxy ObjectsSmart Proxy Objects

¥¥ Local proxy objects act as placeholders for remote objectsLocal proxy objects act as placeholders for remote objects

¥¥ Proxy objects responsible for providing transparent accessProxy objects responsible for providing transparent access

¥¥ Proxy objects provide implementation flexibilityProxy objects provide implementation flexibility
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Need a Healthy Mix of Top-Down and Bottom-UpNeed a Healthy Mix of Top-Down and Bottom-Up

Top-Down or Bottom-UpTop-Down or Bottom-Up

¥¥ Use bottom-up when you donÕt completely understand the problemUse bottom-up when you donÕt completely understand the problem

¥¥ Use top-down to completely address the problem and to make sure youUse top-down to completely address the problem and to make sure you
donÕt miss anythingdonÕt miss anything

¥¥ Use bottom-up when the problem needs to be addressed in small chunksUse bottom-up when the problem needs to be addressed in small chunks

¥¥ Use top-down in relatively stable environment; use bottom-up in rapidlyUse top-down in relatively stable environment; use bottom-up in rapidly
changing environmentschanging environments

¥¥ Top-down is more efficient when probability of going astray is lowTop-down is more efficient when probability of going astray is low

¥¥ Bottom-up is more forgivingBottom-up is more forgiving

¥¥ Top-down is about knowing it all at the start; bottom-up is about learningTop-down is about knowing it all at the start; bottom-up is about learning
along the wayalong the way

¥¥ Top-down has slower cycles; bottom-up has faster cyclesTop-down has slower cycles; bottom-up has faster cycles

¥¥ Apply top-down at the conceptual level; apply bottom-up near detailsApply top-down at the conceptual level; apply bottom-up near details
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SummarySummary

¥¥ Virtual prototyping is a key enabler for the simulation-basedVirtual prototyping is a key enabler for the simulation-based
acquisitionacquisition

¥¥ Approaches to large-scale virtual prototypes that requireApproaches to large-scale virtual prototypes that require
commonality across systems or business are limited by businesscommonality across systems or business are limited by business
and technical constraintsand technical constraints

¥¥ New architectural concepts are emerging to facilitate virtualNew architectural concepts are emerging to facilitate virtual
prototypingprototyping

¥¥ Use a hybrid top-down and bottom-up implementation approachUse a hybrid top-down and bottom-up implementation approach


